# Criticality Analysis as part of the VVMethods Safety Argumentation

Christian Neurohr (Lead VVM Criticality Analysis)





Gefördert durch:

Bundesministerium für Wirtschaft und Energie

## **VVMethods Approach for the Release of Automated Vehicles**



- The release of automated vehicles requires a rigorous Safety Argumentation.
- The VVMethods Safety Argumentation is structured as a hierarchy of claims substantiated by sub-claims.
- How to derive the reasoning for edge cases?
  - Edge cases appear as combinations of influencing factors, called criticality phenomena (CP), which are analyzed regarding their
    - ➢ relevance
    - > safety impact

within the context of the operational domain (OD) & driving task.

Claim (of the Criticality Analysis): we identified and analyzed the relevant CP in the OD.





## **Criticality Analysis – Basic Concept**



C. Neurohr, L. Westhofen, M. Butz, M. H. Bollmann, U. Eberle and R. Galbas, "Criticality Analysis for the Verification and Validation of Automated Vehicles," in *IEEE Access.* 



#### **Assumptions:**

- > set of criticality phenomena is limited and manageable  $\rightarrow$  finiteness (of artefacts)
- ▶ relevant phenomena leave traces in growing data basis → completeness (of artefacts)

## Example: the criticality phenomen "occlusion"

- identify the criticality phenomen "occlusion"
  - Find adequate level of abstraction and relevant concretizations
  - > use ontological representation to formalize knowledge

| Absolute Cases Relative Cases |        | Criticality Phenomenon        | Ontological<br>Classification | Estimated<br>Criticality | Tags                              |
|-------------------------------|--------|-------------------------------|-------------------------------|--------------------------|-----------------------------------|
| 2701                          | 21.79% | Occlusion                     | Perception                    | Medium                   | Limited Perception                |
| 573                           | 4.62%  | Occluded Pedestrian           | Perception                    | High                     | Limited Perception, VRU           |
| 1031                          | 8.32%  | Occluded Bicyclist            | Perception                    | High                     | Limited Perception, VRU           |
| 982                           | 7.92%  | Occluded Intersecting Vehicle | Perception                    | Medium                   | Limited Perception, Trajectory    |
| 0                             | 0%     | Occluded Obstacle             | Perception                    | Medium                   | Limited Perception, Obstacle      |
| n.i.                          | n.i.   | Occluded Lane Markings        | Perception                    | High                     | Limited Perception, Lane Markings |
| 221                           | 1.78%  | Occluded Traffic Sign         | Perception                    | Depends                  | Limited Perception, Traffic Sign  |
| n.i.                          | n.i.   | Occluded Traffic Light        | Perception                    | High                     | Limited Perception, Traffic Light |

> check available data basis for empirical evidence whether the phenomenon is relevant

- searching the GIDAS database yields
  - > N = 12394 accidents in urban areas involving a passenger car
  - $\succ$  2701  $\approx$  21,79% are associated with "occlusion"
- strong indication that "occlusion" is a relevant phenomenon

## **Relevance Estimation for Criticality Phenomena**

- > Analysis of GIDAS accident database:
  - Relevant subset of accidents for VVMethods: N = 12394 accidents "cases"
  - Analysis of each case regarding the presence of 116 (out of 166) criticality phenomena
- For each criticality phenomenon identifiable in GIDAS, obtain absolute and relative incidences in the database
- Ranking phenomena according to incidences in GIDAS allows estimation of relevance
- Edge cases appear as combinations of criticality
  phenomena





## **Causal Analysis of the Safety Impact of Criticality Phenomena**



- use causal graphs to represent hypotheses about the underlying causal relation of phenomena
- Incorporate criticality metrics as to make the safety impact of phenomena measureable
- Collect evidences for causal relations using
  - real-world data
  - synthetic data (simulation)
- iterative abstraction & refinement within plausibilisation to improve causal relation



FIGURE 6: Causal relation  $CR_{stat-occ-tp}$ , represented as a DAG, connecting the criticality phenomenon  $CP_{stat-occ-tp}$  to criticality measured via conditional required acceleration ( $a_{req,cond}$ ). Unobserved variables are gray and independent variables are orange. The exposure variable 'occlusion' is marked green. The outcome variable 'max  $a_{req,cond}(ego)$ ' is marked blue.

### **Summary**



#### How does VVMethods deal with edge cases?

#### > Criticality Analysis:

- identification of criticality phenomena (CP) and estimation of relevance
- causal analysis of CP regarding their Safety Impact
- edge cases appear as combinations of CP (workshop discussion!)

#### Safety Argumentation is the KEY!

- hierarchy of claims and sub-claims enables rigorous reasoning for the release of AVs
- artefacts of the Criticality Analysis appear as claims and sub-claims in the Safety Argumentation



# **Thank you for your attention!**

Dr. Christian Neurohr, Senior Researcher OFFIS e.V. – Institute for Information Technology <u>christian.neurohr@offis.de</u>

Gefördert durch:

Bundesministerium für Wirtschaft und Energie



# Workshop Discussion: VVMethods Approach for dealing with Edge Cases

Christian Neurohr (Lead VVM Criticality Analysis)



Gefördert durch:

für Wirtschaft und Energie

VERIFICATION

VALIDATION

**METHODS** 

## **Edge Cases as Combinations of Criticality Phenomena**



- Accidents in (human) traffic are <u>multi-</u>
  <u>causal</u>.
- After filtering out abstraction/refinement relations …
  - most accidents (~55%) in urban areas feature between 4 and 7 CPs per case
  - 94 accidents feature no CP; either
    not relevant for AVs or due to
    incompleteness of CP collection
  - 4 special "loaded" cases with more than 15 CP will be <u>discussed in the</u> <u>afternoon session</u>



## Edge Case #1: Car vs. Pedestrian (featuring 16 CP)



#### Environment

- Rain
- Reduced Friction on Road
- Limited Global Light Source

#### Infrastructure

- Intersection
- Pedestrian Crossing
- Degraded Road Quality
- Degraded Lane Markings
- Intersecting Tram Rails

#### Involved Actors, Maneuvers, Misconduct

- Intersecting Planned Trajectories of TPs
- Presence of VRUs with Road Access
- Presence of URUs with Road Access
- Dark Clothing of VRU
- Pedestrian crossing Road directly
- Non-Ego-TP running a Red Traffic Light
- Non-Ego-TP violating Right of Way
- Strong Braking Maneuver of Ego/Non-Ego-TP



## Edge Case #2: Car vs. Car vs. Pedestrian (featuring 17 CP)



#### > Environment

➤ Wind

#### > Infrastructure

- Intersection
- Pedestrian Crossing
- Degraded Road Quality

#### > Involved Actors, Maneuvers, Misconduct

- Intersecting Planned Trajectories of TPs
- Presence of VRUs with Road Access
- Impaired VRU with Road Access
- Presence of URUs with Road Access
- Occluded Pedestrian
- Pedestrian crossing Road directly
- Dark Clothing of VRU
- Non-Ego-TP running a Red Traffic Light
- Non-Ego-TP violating Right of Way
- Strong Braking Maneuver of Ego/Non-Ego-TP
- Strong initial Braking Maneuver of Ego/Non-Ego-TP
- Small Distance to Front
- Small Distance to Back



## Edge Case #3: Car vs. Car vs. Parking Car (featuring 17 CP)



#### Environment

Extreme (change in) Temperature

#### Infrastructure

- Intersection
- Bad Road Surface

#### Perception

- Occluded Traffic Sign
- Occluded Intersecting Vehicle
- > Occluded Vehicle

#### > Involved Actors, Maneuvers, Misconduct

- Intersecting Planned Trajectories of TPs
- Non-Ego-TP violating Right of Way
- Non-Ego-TP aggressive driving
- Passing of Parking Vehicle
- Non-Ego-TP impaired driving ability
- Excessive Speed of Non-Ego-TP
- High Relative Speed
- Presence of URUs with Road Access
- Strong Braking Maneuver of Ego/Non-Ego-TP
- Interaction with Emergency Vehicles



## Edge Case #4: Car vs. Bicyclist (featuring 16 CP)



#### Environment

Extreme (change in) Temperature

#### > Infrastructure

- Intersection
- Bad Road Surface
- Degraded Road Quality

#### Perception

Occluded Bicyclist

#### > Involved Actors, Maneuvers, Misconduct

- Intersecting Planned Trajectories of TPs
- High Relative Speed
- Non-Ego-TP violating Right of Way
- Lane Closure
- Passing of Parking Vehicle
- Risky Lane Change of Non-Ego-TP
- Bicycle Lane Change onto Road
- Wrong-Way Bicyclist
- Strong Braking Maneuver of Ego/Non-Ego-TP
- Presence of VRUs with Road Access
- Dark Clothing of VRU
- Non-Ego-TP on Wrong Non-Driveable Lane



## **Top Criticality Phenomena**



VERIFICATION VALIDATION METHODS

## **Top Criticality Phenomena (no abstractions)**



VERIFICATION VALIDATION METHODS



# **Thank you for your attention!**

Dr. Christian Neurohr, Senior Researcher OFFIS e.V. – Institute for Information Technology <u>christian.neurohr@offis.de</u>

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

