

VERIFICATION VALIDATION METHODS

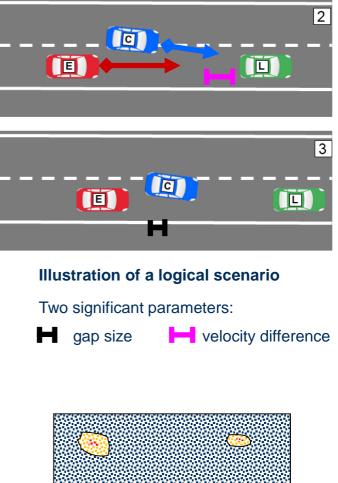
ADVANCED SCENARIO SPACE EXPLORATION VIA SIMULATION

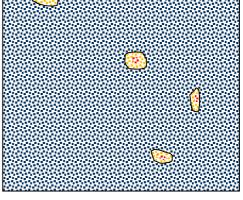
A Concept for Guarateeing Complete Criticality Identification

Hardi Hungar, DLR

Problem Statement

Given:

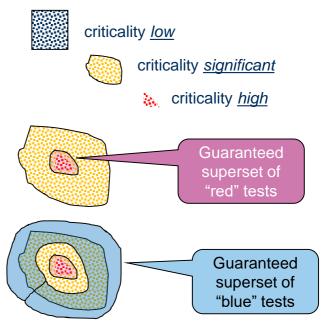

- A simulation model (1) of an ADS*)
- A logical test scenario


Task:

- Perform a comprehensive virtual test of the ADS behavior in the given scenario
 - Find all critical concrete
 instances of the scenario
- *) ADS: Automated Driving System

Problem Background:

- The ADS (the test object) may <u>not</u> be able to <u>avoid critical evolutions</u> for certain parameter combinations
- There may be <u>significantly</u> and <u>highly critical</u> concrete instances of the scenario
- It is <u>difficult</u> to cover the scenario space <u>completely</u> due to the high number of parameter combinations
 - > Even a thorough virtual test



Criticality in a two-dimensional parameter space

might overlook critical instances

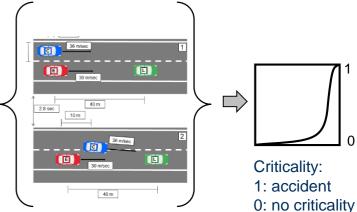
Technical Objective:

- Identify all parameter regions resulting in highly critical test runs
- This means to determine a (preferably small) superset of highly critical regions
- (Complemented by a superset of uncritical regions)

on the basis of a decision by the German Bundestag

VERIFICATION VALIDATION METHODS

ADVANCED SCENARIO SPACE EXPLORATION VIA SIMULATION


A Concept for Guarateeing Complete Criticality Identification

Solution Summary

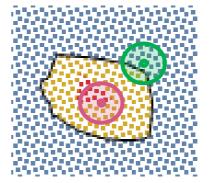
- 1. Construct a Lipschitz-continuous indicator of criticality on trajectories
- 2. Identify parameter regions with continuous behavior
- 3. Cover each region Lipschitz-densely by witnesses
- 4. Construct criticality cover from witnesses

1. Criticality Indicator CI

- A function assigning a criticality value to each simulation run
- Lipschitz-continuous (limited criticality increase in local neighborhood)

Simulation result

- Discrete change of
- other vehicle
 (directly observable)
 - Discrete change of test ADS (to be detected via simulation)

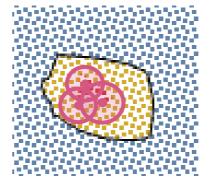

Sample continuous region

2. Identify continuous regions

 Parameter changes within these regions do not trigger discrete disruptions in behavior

3. Cover scenario space

Compute **witnesses** by simulating concrete scenario instances



- Use Lipschitz-constant to determine neighborhoods of guaranteed limited criticality range
- Compute witness neighborhoods to cover each region
- 4. Construct criticality cover
- Combine critical neighborhoods to cover all critical scenario instances

Witness neighborhoods

Critical region cover

VERIFICATION VALIDATION METHODS

ADVANCED SCENARIO SPACE EXPLORATION **VIA SIMULATION**

A Concept for Guarateeing Complete Criticality Identification

Summary

- Approach to reliably identify all critical instances in large scenario spaces by simulation
- Addresses the problem of providing guarantees needed in safety • argumentations

Status and Plans

- This work has been conducted in • **SET Level**
- The concept is currently being ٠ elaborated
- A prototype implementation is • planned
- Experiments are going to be • conducted in VVM

Reference Paper

Hungar, Hardi A Concept of Scenario Space Exploration with Criticality Coverage Guarantees Proc. ISoLA 2020, Springer LNCS 12478, pp. 293-306 DOI:10.1007/978-3-030-61467-6_19

https://link.springer.com/book/10.1007/978-3-030-61467-6

A project developed by the **VDA Leitinitiative** autonomous and connected driving

on the basis of a decision by the German Bundestag