

EMPIRICAL SIMULATION VALIDATION

Comparing proving ground and simulation data of a SAE Level 4 System

Hardi Hungar, Gerald Temme; DLR

Goal:

Evaluation of the empirical realism of simulation data by comparison with a SAE4 system in the loop

Method:

Comparison of gathered simulation data with reference data from reality (proving ground):

- Use of same SAE4 Automation and parametrization for System Under Test (SUT)
- Addressing same scenarios
- Faithful OpenDRIVE modeling of proving ground environment environment
- Replay of movement of traffic based on measured data on proving ground

Pre-study performed in Q4 2021:

- Recorded 56 data sets within two selected scenarios in both environments
- In-the-loop test of all involved components as a preparation of a main study Q4.2022
- Ongoing improvement of data analysis regarding quality of

Satellite image of proving ground in reality Source: Google Maps

Automation controlling a research vehicle on proving ground

Automation operating within a simulation framework (SET Level development)

Model of proving ground within **simulation** Format: OpenDRIVE

Twitter @vvm-project LinkedIn VVM Project www.vvm-projekt.de

Projektpartner

EMPIRICAL SIMULATION VALIDATION

Comparing proving ground and simulation data of a SAE Level 4 System

Overview diagram of involved components and their relations to gather comparable date on proving ground and simulation

Twitter @vvm-project www.vvm-projekt.de LinkedIn VVM Project

Projektpartner

EMPIRICAL SIMULATION VALIDATION

Comparing proving ground and simulation data of a SAE Level 4 System

Data Analysis Phases

1. Data alignement

- Data format transformation into comparison form
- Elimination of measurementsystematic discrepancies

2. Discrepancy analysis

- Definition of comparison metrics
- Detection of discrepancies on
 - Trajectory level
 - Internal system level
 - Component level
- Discrepancy source analysis
 - **Environmental modeling**
 - Component models
 - Composition (co-simulation) artefacts

Simulation trajectory Proving ground trajectory Trajectory comparison metrics

3. Simulation improvement

- Eliminate detected simulation deficiencies
- Re-simulation

XXXXXX ✓ XXXXXX **ZZZZZZ**

✓ XXXXXX уууууу **ZZZZZZ**

4. Analysis iteration

Iterated discrepancy analysis

5. Validation Report

- Comparison verdict
 - Qualified simulation validity statement
- Lessons learned
 - Experiment setup and conduct
 - Analysis methods and results

Twitter @vvm-project www.vvm-projekt.de LinkedIn VVM Project

Projektpartner

A project developed by the **VDA** Leitinitiative autonomous and connected driving

