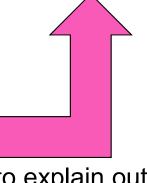

Safety Assurance to Earn Public Trust: Formalizing the Safety Case for ADS (Automated Driving Systems)

Steven E. Shladover, Sc.D. California PATH Program University of California, Berkeley V&V Methods Mid-Term Meeting March 16, 2022

The Safety Case Context

Societal Inputs :


Safety benchmark What metrics to apply to ADS to compare? How much safer does it need to be? What stakeholders must be engaged?

Earning stakeholder trust

- Corporate risk managers
- Safety regulators
- General public and traffic safety advocates

Safety Case Development

- (Technical analyses, prioritized)
- Functional safety analyses
- SOTIF analyses
- Safety Management Systems
- Proving ground test results
- Public road test results
- Simulation results

How to explain outputs accurately and convincingly?

Need to Define Safety Benchmark up Front

- Start from today's traffic safety
 - Well documented, large data sample (statistically valid)
- Easy to explain to regulators and general public
- Good basis for starting discussions about how much safer ADS need to be
- Central challenge: How to estimate safety of ADS for comparison with the baseline?

Desired Outcomes from Safety Case

- Goal: <u>Earn</u> the trust of safety regulators and the general public so that they can be legitimately assured of ADS safety before deployment.
- Objectives:
 - Demonstrate due diligence applied to ADS development and deployment by following best safety practices (UL4600, ISO 26262, ISO 21448)
 - Produce quantitative evidence of safety case credibility
 - Use leading measures to show expected traffic safety improvement from ADS deployment

Need for leading measures of effectiveness

- Testing of prototype ADS cannot produce sufficient data within reasonable time and cost (RAND study)
- Direct comparison of ADS performance with human performance in specific safety scenarios is not viable
 - Cannot represent huge diversity of human performance realistically in models or tests
 - Safety-critical scenarios amplify randomness and diversity in human behavior
 - Driving simulators lack realism in extreme conditions
 - Ethical constraints on use of human test subjects

Potential leading measures of effectiveness

- Demonstrated ability of ADS to avoid crashes in specific challenging scenarios
 - Proving ground tests of ADS
 - Simulations (if simulation can be validated)
- Demonstrated ability of ADS to significantly mitigate severity of crashes in specific very challenging scenarios
 - Proving ground tests of ADS
 - Simulations (if simulation can be validated)

Leading and Trailing Measures – Trade-offs

	Leading (Pre-deployment scenario-based assessments)	Trailing (Post-deployment real-world experience)
Baseline (Human driving)	 Human driving in hazard scenarios is too diverse and complex to model realistically Realistic experiments would be too dangerous and costly 	Current aggregate traffic safety statistics: - Well documented and understood - Huge sample (statistically robust)
Automated Driving	 Predicting ability to respond to hazardous scenarios: How to identify scenario set that can adequately represent real- world hazards? How to develop and validate sufficiently realistic simulations? 	 Too late to be useful for deciding on deployability Very limited samples, under limited conditions, Data not open to public scrutiny

Summary of KeyTechnical Challenges

- How to produce real data to show (quantitatively) that a prototype/design ADS will improve traffic safety, so it should be deployed?
 - Selecting the most relevant *leading measures* of effectiveness to compare to the baseline *trailing measures* of crash rates of different severities?
 - What range of scenarios will need to be simulated and tested to produce sufficient data?
 - What mix of testing and simulation is needed?
 - How can simulations be validated to a sufficient level that their results can be trusted?

Start as simple as possible

- Limited ADS functionality within limited ODD ulletconditions to bound complexity of relevant scenarios
 - Start with scenarios from current crash data
 - Add scenarios based on available information about near-misses under current conditions
 - Add scenarios based on ADS fault conditions from functional safety assessments
 - Add scenarios based on potential external hazards from **SOTIF** assessments
 - For all scenarios, do parameter variations

Parameter Variations in Scenarios

- Crashes are rarely under "mean value" conditions
- Assessments must account for wide variations in:
 - Initial location and velocity of every mobile object
 - Condition of road markings and signage
 - Presence of static objects on and near the road
 - Weather, lighting and electromagnetic environment
- How many combinations of these variations and how far out on the tails of the distributions?
- How many to deter gaming by "design to the test"?
- What success percentage needed to "pass"?

If using simulation, how to validate it?

- Crash-imminent situations stretch simulations beyond their normal validity (extreme conditions, nonlinear performance)
- What tests are needed to produce a validation data set containing those extreme combinations of conditions?
 - How can they be done safely?
 - Can validation be done at component or subsystem level?
- How closely do simulations need to match test data to be considered "valid" for safety assurance?

Limitations in Realism of Simulations

- Sensor phenomenology anomalies based on noise, EMI, bad lighting (low sun angle, specular reflections), poor target resolution,...
- Vision-specific errors shadows, foreign objects on road, • reflections, glare, worn or occluded signs and markings
- Actions of other road users to try to avoid crash •
- Vehicle imperfections worn components, tire contact • friction, suspension bottoming...
- Road geometry and surface condition imperfections •
- **Driver override interventions**

Plenty of efforts still needed...

- Developing processes for engaging stakeholders to agree on safety criteria
- Extrapolating to predict real-world ADS safety based on results for limited (affordable) scenarios
- Methods for simulating ADS safety-critical scenarios and validating them to an acceptable level of fidelity
- Methods for combining simulation and testing to produce believable real-world ADS safety estimates
- Methods for explaining ADS safety case findings to regulators and the general public

International Harmonization Topics

- Safety baseline(s) variables (not numerical values)
- Relevant *leading measures* of effectiveness of ADS safety (and how to estimate them)
- Standards on validation of ADS safety simulation models
 - Validation methods
 - Validation measures of effectiveness and passing criteria
- Standards for selection of ADS scenarios
 - Criteria for prioritizing relevance to real-world safety
 - Criteria for determining sufficient variety and number of scenarios to support the safety case