

Mid-Term Presentation 15 / 16 March 2022

An Approach for Decomposition and Analysis

Julian Pott, Ford Werke GmbH; Matthias Rauschenbach, Fraunhofer LBF; Martin Mai, ZF; Tobias Braun, Fraunhofer IESE; Simon Kupjetz, Fraunhofer LBF; Christian Wolschke, Fraunhofer IESE

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag Content

> Part 1:

From Capabilities to Requirements Julian Pott, Martin Mai

Part 2:

A safety analysis method regarding capabilities, weaknesses and component failures Matthias Rauschenbach, Tobias Braun, Simon Kupjetz, Christian Wolschke

V&V Process in Assurance Framework

Problem Statement

- How to...
 - ... get from the capability-based architecture to functional requirements
 - Including other sources e.g. item definition
 - ... develop quality measurements and create a catalogue
 - ... develop additional requirements based off quality measurements
 - ... document decomposition of quality measurements
 - ... document decomposition of requirements (solved by SE)

Prerequisites and exemplary solution

- Stakeholder needs
 - > Delivers description of the systems potential to produce the target behavior (Cap.-Based Arch.)
 - Functional Features
 - Item definition
- > Derive System-Requirements (FUC 2.3) according to the Capability-Based Architecture

ID	Title	System Requirement	Req. Type	Refines
SR-3.1.2	crosswalk marking perception	The system shall perceive broad stripes on the road for <i>crosswalk markings</i> .	Functional	

- Create or review related quality measurements
 - Goal, Question, Metric (GQM) application
- Decompose requirements and quality measurements
 - Perception example

Intro to Goal, Question, Metric [Basili]

- Method to measure goals of Organizations and its Projects
- Examples:
 - > Products: Specifications, Software, Designs, ...
 - Processes: designing, developing, testing
 - Resources: People, Hardware, Software,..
- ► → For our usage we only execute the first 3 steps of GQM
- Basili, Caldiera, Rombach (Encyclopedia of Software Engineering 2 Volume Set, 1994) (Link)

GQM Model overview

- GQM model contains
 - Goals: e.g. fulfillment of the feature functions
 - Questions: Questions of stakeholders regarding a goal
 - Metrics: quantifiable answers to the questions

1. Goal Definition

- GQM goal Definition
 - Purpose
 - Issue
 - Object or Process
 - > A Viewpoint (developer, tester, management, ...)
- > Example:

Goal	Purpose	Improve
	Issue	the understanding of
	Object	Goal Question Metric
	Viewpoint	from the audience's viewpoint.

2. Questions

- Definition of questions regarding a goal
- Represent the evaluation of success regarding a goal

Goal	Purpose	Improve
	Issue	the understanding of
	Object	GQM
	Viewpoint	from the audience's viewpoint.
Question	Q1	Does the web conference work?
Question	Q2	Is there enough time to ask questions?

3. Metrics

Find quantitative answers to questions

Goal	Purpose	Improve	
	Issue	the understanding of	
	Object	Goal Question Metric	
	Viewpoint	from the audience's viewpoint.	
Question	Q1	Does the web conference work?	
Metrics	M1	# of disconnects per hour due to web conf sw failures	
	М2	Screen forwarding latency	
	M3	Packet loss of each participant	
Question	Q2	Is there enough time to ask questions?	
Metrics	M4	presentation time actual <= planned time for presentation	

System Requirements refined by Performance Requirements

- With respect to the goals they relate to in the GQM Model
- Goals can be added to the GQM Model and analyzed
- New Performance Requirements are created
 - Based on GQM Model content

ID	Title	System Requirement	Req. Type	Refines
SR-3.1.2	crosswalk marking perception	The system shall perceive broad stripes on the road for <i>crosswalk</i> markings.	Functional	
SR-3.1.2a	crosswalk marking perception range	The system shall perceive crosswalk markings on the vehicle's traffic lane in a distance at least between ? and ? meters in the direction of driving.	Performance	SR-3.1.2

Decomposition of Requirements and Quality Measurements

15./16.03.2022 | VVM Mid-Term Presentation | Julian Pott, Matthias Rauschenbach

Conclusion and Outlook

- Based on a Capability-based architecture and first functional System Requirements
 - How to derive Quality Measurements via GQM and catalogue them
 - Document discovered decomposition of quality measurements via the GQM Model
 - Established a knowledge base for Requirements and Test Requirements
- > CFT, probFMEA as consumer of GQM Model to perform Safety Analysis

Content

> Part 1:

From Capabilities to Requirements Julian Pott, Martin Mai

Part 2:

A safety analysis method regarding capabilities, weaknesses and component failures Matthias Rauschenbach, Tobias Braun, Simon Kupjetz, Christian Wolschke

How to...

- > ... perform a methodological safety analysis considering
 - Fully automated driving function
 - Very large number of variations of driving scenarios and boundary conditions (open context)
 - > Large range of possible interactions of the vehicle with its environment
- > ... identify gaps and shortcomings of the implementation on each level of aggregation
 - Behavioral layer
 - Engineering layer
- ... evaluate and measure sufficiency of risk mitigation and safety measures
- > ... contribute to the specification of testing criteria and strategies

Combination of advanced state-of-the-art methodical concepts for safety verification

- Top-Down approach:
 Safety goal violation → Causes in parts
- Modular, hierarchic approach
- Modelling of failure propagation
- Tight alignment and traceability between failure propagation and architecture
- > Probabilistic FMEA "probFMEA" (Fraunhofer LBF)
 - Bottom-Up approach:
 causes in parts → Safety goal violation
 - Logical network with multiple failure effects (conditional)
 - Modelling and calculation of consequential probabilities in Bayesian Networks

> Combination of both approaches to establish

- one coherent and systematic methodology
- one consistent and wholistic information model

Approach related to levels of specifications of a HAV

Analysis steps across the different development views

Process overview

VERIFICATION VALIDATION METHODS

15./16.03.2022 VVM Mid-Term Presentation Julian Pott, Matthias Rauschenbach

Exemplary demonstration of tool-supported method application

- Instantiated model the capability-based architecture for one specific use-case (as a prerequisite) [for more background on this, see presentation on capability-based taxonomy (by T. Hofmann Stream 1)]
- Exemplary representation in Enterprise Architect (EA)
- Tool support implemented in SafeTBox (EA plug-in)

Guide-word-based analysis

eneric Failure Type System Specification		
Name	Description	
NONE	Indicates that no failure types is defined	
No	Service or Signal is not delivered	
Less	Service or Signal provides a lower value than expected	
More	Service or Signal provides a higher value than expected	
Too early	Service or Signal is delivered earlier than expected	
Too late	Service or Signal is delivered later than expected	
Non existent	Elemente refered to does not exist	
Too large	Service or Signal provides too large values resp results	
Too small	Service or Signal provides too small values resp results	

Possibilities for insufficency of the capability "Detection of crosswalk sign" (Use Case Step 1):

- Crosswalk sign not identified
- Crosswalk sign identified too late
- other sign identified instead
- Crosswalk sign identified in wrong position

...

Exemplary failure model for

"crosswalk sign detected as relevant, although not relevant"

Summary and outlook

- Advanced methodology for analytical verification of highly automated driving
 - Integral approach combining fault trees and FMEA (reduction of effort and inconsistencies)
 - Scenario-based verification of behavior against situationally required capabilities
 - Analysis of component weaknesses (SOTIF) and failures (functional safety)
- Coherent evaluation in a consistent database:
 - Qualitative: Determination of relevant triggering conditions and weaknesses (minimal cut-sets)
 - Quantitative: Consistent evaluation of safety-criteria for automated vehicles (scenario-specific)
- Future research topics and challenges for the 2nd half of the VVM-project:
 - > Usage of the GQM and failure analysis methodologies in the framework of a consistent safety argumentation
 - Refinement, verification of the formalism for notation and modeling of failure model across the boundary between capability and engineering layer
 - Requirements concerning the tool support to handle the complexity of HAD

Thank you!

Julian Pott, Ford Werke GmbH; Matthias Rauschenbach, Fraunhofer LBF; Martin Mai, ZF; Tobias Braun, Fraunhofer IESE; Simon Kupjetz, Fraunhofer LBF; Christian Wolschke, Fraunhofer IESE

A project developed by the VDA Leitinitiative autonomous and connected driving Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag