

Mid-Term Presentation 15 / 16 March 2022

Criticality Analysis for the Verification & Validation of Automated Driving Systems

Christian Neurohr, German Aerospace Center (DLR)

V&V Process in Assurance Framework

Criticality Analysis in VVM

- criticality (of a traffic situation) is the combined risk of the involved actors when the situation is continued
- ▶ main goal: gain knowledge on the open context w.r.t. the emergence of criticality and its conditions → structuring of the operational domain
 - identification of influencing factors associated with increased criticality
 → criticality phenomena
 - improve understanding of criticality phenomena by analysis of underlying causal relations → derivation of target behavior
 - abstraction leads to classification of scenarios
 - → contribution to scenario-based verification & validation
- tools employed for criticality analysis:
 - ontologies, criticality metrics, simulation
 - acquisition & management of knowledge and data
 - > statistical analysis, machine learning, causal inference

use case "urban intersection"

Criticality Analysis – the Basic Concept

Assumptions:

- ▶ set of criticality phenomena is limited and manageable → finiteness (of artefacts)
- ▶ relevant phenomena leave traces in growing data basis → completeness (of artefacts)

- Method Branch identification of criticality phenomena, modeling of causal relations, plausibilization of hypotheses, criticality metrics
- Information Branch knowledge and data management for the criticality analysis, ontologies.
- Scenario Branch use scenarios as the 'substrate' of the criticality analysis, a means for structuring processes and description of reality

Example: the Criticality Phenomenon ,Occlusion'

- identify the criticality phenomen ,occlusion' (e.g. via expert knowledge)
 - find adequate level of abstraction and interesting concretizations
 - use ontological representation to organize knowledge

Absolute Cases	Relative Cases	Projection	Criticality Phenomenon	Ontological Classification	Estimated Criticality
2978	22.9%	36746	Occlusion	Perception	Medium
600	4.6%	7401	Occluded Pedestrian	Perception	High
1076	8.3%	13280	Occluded Bicyclist	Perception	High
844	6.5%	10413	Occluded Intersecting Vehicle	Perception	Medium
0	0%	0	Occluded Obstacle	Perception	Medium
-	-	-	Occluded Lane Markings	Perception	High
313	2.4%	3865	Occluded Traffic Sign	Perception	Depends
-	-	-	Occluded Traffic Light	Perception	High

- gather empirical evidence for the relevance of ,occlusion'
 - searching the GIDAS database yields
 - $ightharpoonup rac{2978}{12997} \approx 22,9\%$ accidents associated with ,occlusion'
- GIDAS—German In-Depth Accident Study since 1999 -

> strong indication that "occlusion" is a **relevant phenomenon** in non-automated traffic

Estimation of Relevance for Criticality Phenomena

- analysis of GIDAS accident database,
 - for relevant VVMethods subset N = 12997 accidents "cases" in urban areas involving a passenger car
 - Analysis of each case regarding the presence of 116 criticality phenomena identifiable in the database
- for each phenomenon, obtain absolute and relative frequencies of occurence
 - ranking phenomena according to frequency allows estimation of relevance
 - interesting cases appear as combinations of criticality phenomena

From Association to Causality:

Causal Effect Analysis of Criticality Phenomena

- use causal graphs to model assumptions about the underlying causal relations of criticality phenomena
- incorporate criticality metrics as to make the impact of phenomena measureable
- acquire data that enable the computation of the causal effect of the phenomenon on measured criticality, using either
 - real-world data or
 - synthetic data (simulation)
- iterative abstraction & refinement of causal assumptions during plausibilisation of the causal relation

Figure: causal graph for evaluating the causal effect of "occlusion" on the criticality metric $a_{req,cond}(ego)$.

Plausibilization of Causal Relations

include parameters
necessary to estimate
causal effects in a
logical scenario

for plausibilization of the causal relation ,occlusion consider an abstract scenario (e.g. as Traffic Sequence Chart) with a potential occlusion

minimal
 adjustment set of
 variables from
 causal graph
 analysis

- for realization of the occlusion scenario in a simulation derive a logical scenario
- example parameter space for simulation using CARLA

Parameter	Range
ego start position (x, y) ego target position (x, y) ego target speed (km/h) bicyclist start position (x, y) bicyclist target position (x, y) bicyclist target speed (km/h) Dimension of O (discretized as number of parking cars) Position of $O(x, y)$	$ \begin{array}{c} [-58, -33] \times [-29, -28] \\ [50, 55] \times [-29, -28] \\ [25, 60] \\ [31, 32] \times [3, 15] \\ [-50, -45] \times [-34, -33] \\ [10, 25] \\ \{0, 1, 2, 3, 4, 5, 6, 7\} \\ [2, 20] \times ([-35, -34] \cup [-26, -25]) \end{array} $

Simulation of ,Occlusion of Bicyclist through Parking Cars' (FUC2-3)

Video: showing four instantiations of an occlusion scenario with varying criticality using the CARLA simulator.

Generate and Evaluate Synthetic Data for Plausibilization

stochastic variation of adjustment variables to obtain concrete scenarios for simulation

evaluate for each simulation run

- criticality metric(s) from the causal model
- the presence of the criticality phenomenon

20.0 17.5

15.0 12.5

7.5 5.0

2.5

24 22 20 18

Group A: no occlusion present

-45

-40

Group B: occlusion present

perform analysis of the resulting data set, computing quantities of interest, e.g.

$$\mathbb{E}(a_{\text{req,cond}}(ego)|occlusion = 1) = 3.15 \ (\pm 3.10)m/s^2 =: E_1$$

 $\mathbb{E}(a_{\text{req,cond}}(ego)|occlusion = 0) = 1.10 \ (\pm 0.75)m/s^2 =: E_2$
 $E_1 - E_2 = \mathbf{2.05}$ $E_1/E_2 = \mathbf{2.86}$

Summary

- > a methodical **criticality analysis** contributes to structuring the open context
 - > decomposition of the operatonal domain according to emergence of criticality
 - > exemplary conduction within VVMethods for complex urban environments
- > finitely many artifacts result from the criticality analysis, namely
 - > criticality phenomena
 - causal relations
 - abstract scenarios

- > the criticality analysis is sub-divided into three branches, namely
 - > method branch, information branch, scenario branch

Thank you!

Dr. Christian Neurohr

Researcher

DLR SE – Institute of System Engineering for Future Mobility christian.neurohr@dlr.de

A project developed by the VDA Leitinitiative autonomous and connected driving

Supported by:

on the basis of a decision by the German Bundestag

Publications for Further Reading

- "Criticality Analysis for the Verification and Validation of Automated Vehicles"
 - IEEE Access (Journal),
 - VVM Partners: DLR (formerly OFFIS), Bosch, ZF, Stellantis
 - Links: ResearchGate, IEEExplore
- "Criticality Metrics for Automated Driving: A Review and Suitability Analysis of the State of the Art"
 - Preprint (submitted to Journal)
 - VVM / SET Level Partners: DLR (formerly OFFIS), Bosch, FZI, DLR, AVL
 - ResearchGate, arXiv
- "6-Layer Model for a Structured Description and Categorization of Urban Traffic and Environment"
 - ▶ IEEE Access (Journal)
 - VVM Partners: ika, DLR (formerly OFFIS), ZF
 - ▶ Links: ResearchGate, IEEExplore